3.557 \(\int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=196 \[ \frac{-B+i A}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}-\frac{2 \sqrt [4]{-1} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

[Out]

(-2*(-1)^(1/4)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]
*Sqrt[Tan[c + d*x]])/(Sqrt[a]*d) - ((1/2 + I/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a
+ I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/(Sqrt[a]*d) + (I*A - B)/(d*Sqrt[Cot[c + d*x]]*Sqrt
[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.614583, antiderivative size = 196, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.237, Rules used = {4241, 3595, 3601, 3544, 205, 3599, 63, 217, 203} \[ \frac{-B+i A}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}-\frac{2 \sqrt [4]{-1} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

(-2*(-1)^(1/4)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]
*Sqrt[Tan[c + d*x]])/(Sqrt[a]*d) - ((1/2 + I/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a
+ I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/(Sqrt[a]*d) + (I*A - B)/(d*Sqrt[Cot[c + d*x]]*Sqrt
[a + I*a*Tan[c + d*x]])

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{\tan (c+d x)} (A+B \tan (c+d x))}{\sqrt{a+i a \tan (c+d x)}} \, dx\\ &=\frac{i A-B}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{1}{2} a (i A-B)+i a B \tan (c+d x)\right )}{\sqrt{\tan (c+d x)}} \, dx}{a^2}\\ &=\frac{i A-B}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{a^2}-\frac{\left ((i A+B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{2 a}\\ &=\frac{i A-B}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac{\left (i a (i A+B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{\sqrt{a} d}+\frac{i A-B}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (2 B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=-\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{\sqrt{a} d}+\frac{i A-B}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (2 B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{2 \sqrt [4]{-1} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{\sqrt{a} d}-\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{\sqrt{a} d}+\frac{i A-B}{d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 4.10055, size = 227, normalized size = 1.16 \[ \frac{e^{-2 i (c+d x)} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\cot (c+d x)} \left ((A+i B) \left (-1+e^{2 i (c+d x)}\right )-(A-i B) e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )-2 i \sqrt{2} B e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt{2} a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

(Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*((A + I*B)*(-1 + E^((2*I)*(c + d*x))) - (A - I*B)*E^(
I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] - (2*I)*Sq
rt[2]*B*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[-1 + E^((2*I)*(c
 + d*x))]])*Sqrt[Cot[c + d*x]])/(Sqrt[2]*a*d*E^((2*I)*(c + d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.633, size = 805, normalized size = 4.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

(1/2+1/2*I)/d/a*(-I*A*2^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+I*B*sin(d*x+c)*((c
os(d*x+c)-1)/sin(d*x+c))^(1/2)-I*B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-I)+I*B*2^(1/2)*sin(d*x+c)*arctan((1/2+
1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-A*2^(1/2)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(
d*x+c))^(1/2)*2^(1/2))+I*B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)-I*B*cos(d*x+c)*ln(((cos(d*x+c)-1)/sin(d*x+c
))^(1/2)+1)+I*B*cos(d*x+c)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)-I*B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)
+I*A*2^(1/2)*cos(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+B*2^(1/2)*cos(d*x+c)*arc
tan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+A*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+I*A*
sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+I*B*cos(d*x+c)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-I)-I*B*cos(d*
x+c)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+I)+I*B*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+I)-B*2^(1/2)*arctan((1/2
+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-B*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+B*sin(d*x+c)
*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+I)-B*sin(d*x+c)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)+B*sin(d*x+c)*ln(
((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)-B*sin(d*x+c)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-I))*cos(d*x+c)*(a*(I*si
n(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(I*sin(d*x+c)+cos(d*x+c))/sin(d*x+c)/(cos(d*x+c)/sin(d*x+c))^(1/2)/((co
s(d*x+c)-1)/sin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 2.70677, size = 2007, normalized size = 10.24 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/4*(a*d*sqrt((2*I*A^2 + 4*A*B - 2*I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a*d*sqrt((2*I*A^2 + 4*A*B - 2*I
*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) - I*A - B)*sqrt(a/(e^(2*I*d*x + 2*
I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*
A + 4*B)) - a*d*sqrt((2*I*A^2 + 4*A*B - 2*I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c)*log((-I*a*d*sqrt((2*I*A^2 + 4*A*
B - 2*I*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) - I*A - B)*sqrt(a/(e^(2*I*d
*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c
)/(4*I*A + 4*B)) - a*d*sqrt(-4*I*B^2/(a*d^2))*e^(2*I*d*x + 2*I*c)*log(1/605*(208*sqrt(2)*(B*e^(2*I*d*x + 2*I*c
) - B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x
+ I*c) + (156*I*a*d*e^(2*I*d*x + 2*I*c) - 52*I*a*d)*sqrt(-4*I*B^2/(a*d^2)))/(B*e^(2*I*d*x + 2*I*c) + B)) + a*d
*sqrt(-4*I*B^2/(a*d^2))*e^(2*I*d*x + 2*I*c)*log(1/605*(208*sqrt(2)*(B*e^(2*I*d*x + 2*I*c) - B)*sqrt(a/(e^(2*I*
d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + (-156*I*a*d*e
^(2*I*d*x + 2*I*c) + 52*I*a*d)*sqrt(-4*I*B^2/(a*d^2)))/(B*e^(2*I*d*x + 2*I*c) + B)) - 2*sqrt(2)*((A + I*B)*e^(
2*I*d*x + 2*I*c) - A - I*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2
*I*c) - 1))*e^(I*d*x + I*c))*e^(-2*I*d*x - 2*I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \tan{\left (c + d x \right )}}{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )} \sqrt{\cot{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))/(sqrt(a*(I*tan(c + d*x) + 1))*sqrt(cot(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \tan \left (d x + c\right ) + A}{\sqrt{i \, a \tan \left (d x + c\right ) + a} \sqrt{\cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)/(sqrt(I*a*tan(d*x + c) + a)*sqrt(cot(d*x + c))), x)